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Preface

A broad consensus has emerged among music theorists regarding the basic musical 
elements of post-tonal music—pitch, interval, motive, harmony—and this book 
reports that consensus to a general audience of musicians and students of music. Like 
books on scales, triads, and simple harmonic progressions in tonal music, this book 
introduces basic theoretical concepts for the post-tonal music of the twentieth and 
twenty-first centuries.

Beyond basic concepts, this fourth edition also contains information on many of 
the most recent developments in post-tonal theory, including expanded or new cover-
age of the following topics:

•	 transformational networks and graphs
•	 composing-out
•	 transformational voice leading
•	 voice-leading space
•	 harmonic quality
•	 triadic post-tonality
•	 inversional symmetry and inversional axes
•	 interval cycles
•	 contextual inversion and inversional chains

As a result, this book is not only a primer of basic concepts but also an introduction 
to the current state of post-tonal theory, with its rich array of theoretical concepts and 
analytical tools.

Like previous editions of Introduction to Post-Tonal Theory, each chapter of the 
text features a clear and concise exposition of theoretical topics. New pedagogical aids 
enhance the fourth edition: each chapter begins with an outline of its content, and  
In Brief boxes summarize each section. Each chapter concludes with exercises; selected 
answers are provided at the back of the book so that students can check to see if they’re 
on the right track.

This fourth edition features new analysis pedagogy. After the theoretical 
exercises in each chapter, you’ll find two Model Analyses that apply the theoretical 
principles elucidated in the chapter. These are followed by Guided Analyses, where 
students are presented with musical passages of modest length and prompted with 
a series of analytical questions. These Guided Analyses are suitable both for written 
assignments (of a variety of lengths) and classroom discussion. They offer students 
a chance to apply the theoretical concepts they’ve seen in the chapter and Model 
Analyses. They also offer a forum for the discussion of questions of form, rhythm, 
and expression.

Preface      xiii
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In the Guided Analyses, questions are designed to stimulate analytical thought, 
not to suggest definitive, correct answers. The music discussed in this book is inher-
ently challenging and precludes simple answers. There are many possible responses to 
these questions and many possible interpretations of the relationships in this music.

In addition to these substantial pedagogical changes, I have also made some 
modest changes in the presentation of theoretical material. In discussing inversion, I 
have retired the traditional compound operation TnI, in favor of the simpler In and 
(I x

y)  models. Following the suggestion of Aleck Brinkman, who prepared the List of Set 
Classes, I have changed and simplified the procedure for putting sets in normal form. 
Finally, following the emerging practice in the professional literature, I make relatively 
infrequent use of Forte-names for set classes.

Although the “classical” prewar repertoire of music by Schoenberg, Stravinsky, 
Bartók, Webern, and Berg still comprises the musical core, illustrations of theoreti-
cal concepts and Guided Analyses now include music by a wide variety of compos-
ers, including Adams, Adès, Babbitt, Berio, Boulez, Britten, Cage, Carter, Cowell, 
Crawford, Crumb, Dallapiccola, Davies, Debussy, Feldman, Glass, Gubaidulina, 
Ives, Ligeti, Lutosławski, Mamlok, Messiaen, Musgrave, Reich, Ruggles, Saariaho, 
Schnittke, Sessions, Shostakovich, Stockhausen, Tower, Varèse, Wolpe, Wuorinen, 
and Zwilich.

In preparing the fourth edition, I received invaluable advice from Gretchen 
Foley, Dave Headlam, Julian Hook, Steven Rings, and Matthew Santa. I am deeply 
grateful to these experienced scholars and sorry I could not take even more of their 
superb suggestions. The manuscript was class tested by three more veterans—Cyn-
thia Folio, Jonathan Pieslak, and David Schober—and I am grateful to them and 
to their students at Temple University and the CUNY Graduate Center. I received 
editorial and notational help from six brilliant doctoral students at the CUNY 
Graduate Center: Megan Lavengood, Christina Lee, Tim Mastic, Simon Prosser, 
Noel Torres-Rivera, and Abby Zhang. Lori Wacker prepared an earlier version of 
the Answer Key. At Norton, Maribeth Payne welcomed me to a wonderful new 
publishing home, and Justin Hoffman guided the project to completion with his 
customary grace and incisiveness. Rachel Mayer project edited, Jodi Beder copy-
edited, Debra Nichols project edited and proofread, Benjamin Reynolds was the 
production manager, and Grant Phelps was the editorial assistant. For me, they 
have been an editorial dream team. Closer to home, in matters both tangible and 
intangible, Sally Goldfarb has offered continuing guidance and support beyond 
my ability to describe or repay.

Joseph N. Straus
Graduate Center

City University of New York

xiv     Preface
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Octave Equivalence      1

1

1.1    Octave Equivalence

Pitches separated by one or more perfect octaves are usually understood as equivalent. 
Our musical notation reflects that equivalence by giving the same name to octave- 
related pitches. The name A, for example, is given not only to some particular pitch 
(for example, the A that lies a minor third below middle C), but also to all the other 
pitches one or more octaves above or below it. Octave-related pitches are called by 
the same name because they sound so much alike and because Western music usually 
treats them as functionally equivalent. 

Things that are equivalent are not necessarily identical, however. Example 1-1 
shows two versions of a melody that are different in many ways, particularly in their 
rhythm and range. The range of the second version is so wide that the first violin can-
not reach all of the notes; the cello has to step in to help. At the same time, however, 
it is easy to recognize that they are basically the same melody, because they are octave 
equivalent.

1.1  Octave Equivalence

1.2  Enharmonic Equivalence

1.3  Pitch and Pitch Class

1.4  Integer Notation

1.5  Arithmetic modulo 12 (mod 12)

1.6  Intervals (Calculated in Semitones)

1.7  Pitch Intervals (Ordered and Unordered)

1.8  Ordered Pitch-Class Intervals

1.9  Unordered Pitch-Class Intervals

1.10  Interval Class

1.11  Interval-Class Content

1.12  Interval-Class Vector

1.13  Spacing and Register

Basic Concepts of Pitch 
and Interval 

In this chapter, you will learn some standard ways of thinking about 
pitch and interval in post-tonal music, with the intervals counted in 
semitones.
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2      Chapter 1  Basic Concepts of Pitch and Interval 

In Example 1-2, compare the first three notes of the melody with the sustained 
notes in measures 4–5. There are many differences between the two collections of 
notes (register, articulation, rhythm, etc.), but there is also a basic equivalence: they 
both contain a B, a G#, and a G.

Example 1-1  Two octave-equivalent melodies (Schoenberg, String Quartet No. 4, first movement).

Example 1-2  Two octave-equivalent musical ideas (Schoenberg, Three Piano Pieces, op. 11, no. 1).

We find the same situation in Example 1-3: the first three notes of the viola 
melody—G, B, and C#—return as the cadential chord at the end of the phrase. The 
melody and the chord are octave equivalent.
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Example 1-3  Two octave-equivalent musical ideas (Webern, Movements for String Quartet, op. 5, no. 2). 

1.2    Enharmonic Equivalence

In common-practice tonal music, Bb is not the same as A#. Even on an equal-tempered 
instrument like the piano, the tonal system gives Bb and A# different functions and 
meanings. In G major, for example, Bb is b3̂ whereas A# is #2̂, and these different scale 
degrees have very different musical roles. These distinctions are largely abandoned in 
post-tonal music, however, where notes that are enharmonically equivalent (like Bb 
and A#) are also functionally equivalent. 

For example, the passage in Example 1-4 involves three repetitions: the A 
returns an octave higher, the B returns two octaves lower, and the A b returns three 
octaves higher as a G#. All three pairs of notes are octave equivalent; in addition, Ab 
and G# are enharmonically equivalent. 

Pitches that are one (or more than one) octave apart may be 
considered equivalent.

IN
BRIEF

Example 1-4  Enharmonic equivalence (Stockhausen, Klavierstuck III ). 
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4      Chapter 1  Basic Concepts of Pitch and Interval 

There may be isolated moments where a composer notates a pitch in what seems 
like a functional way (sharps for ascending motion and flats for descending, for exam-
ple). For the most part, however, the notation of post-tonal music is functionally 
arbitrary, determined by convenience and legibility.

Example 1-5  Many pitches, but only three pitch classes: F#, G, and Ab (Feldman, Durations III, No. 3).  

Note: The violin is playing harmonics that produce pitches two octaves higher than the filled-in noteheads. 

1.3    Pitch and Pitch Class

By invoking octave and enharmonic equivalence, we can distinguish between a pitch 
(a note with a certain frequency) and a pitch class (a group of pitches with the same 
or enharmonic name). Pitch-class A, for example, contains all the pitches named A, 
and any pitch named A is a member or representative of pitch-class A. When we say 
that the lowest note on the cello is a C, we are referring to a specific pitch. We can 
notate that pitch on the second ledger line beneath the bass staff. And we can refer to 
it using the numerical designation of middle C as C4—the lowest note on the cello is 
thus C2. When we say that the tonic of Beethoven’s Fifth Symphony is C, however, 
we are referring not to some particular pitch C, but to pitch-class C. Pitch-class C is an 
abstraction and cannot be adequately notated on musical staves. Sometimes, for con-
venience, we will represent a pitch class using musical notation. In reality, however, 
a pitch class is not a single thing; it is a class of things: namely, pitches one or more 
octaves apart.

In Example 1-5, each of the three instruments plays a series of notes. We 
hear many different pitches as the instrumental lines leap about. The tuba, for 
example, plays five different pitches, most of which are repeated. But taking the 
passage as a whole, we hear only three pitch classes: F#, G, and Ab.  

Notes that are enharmonically equivalent (like Bb and A#) may be 
considered equivalent. 

IN
BRIEF
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Example 1-6  Integer notation of pitch class. 

Integer Name Pitch-Class Content

  0 B#, C, Dbb

  1 C#, Db

  2 C‹, D, Ebb

  3 D#, Eb

  4 D‹, E, Fb

  5 E#, F, Gbb

  6 F#, Gb

  7 F‹, G, Abb

  8 G#, Ab

  9 G‹, A, Bbb

10 A#, Bb

11 A‹, B, Cb

1.4    Integer Notation

There are only twelve pitch classes. All the B#s, Cns, and D∫s are members of a single 
pitch class, as are all the C#s and Dbs, all the C‹s, Dns, and E∫s, and so on. We will 
often use integers from 0 through 11 to refer to the twelve pitch classes. Example 1-6 
shows the twelve pitch classes and some of the contents of each, following a “fixed do” 
notation: the pitch class containing the Cs is arbitrarily assigned the integer 0, and the 
rest follow from there.

A pitch class is a collection of pitches related by octave and 
enharmonic equivalence.

IN
BRIEF

When referring to pitch classes, we will use either traditional letter names or 
pitch-class integers, whichever seems clearest and easiest in a particular context. In 
Example 1-7, pitch-class integers are assigned to the notated pitches (with octave and 
enharmonic equivalence assumed throughout).
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6      Chapter 1  Basic Concepts of Pitch and Interval 

Integers are traditional in music theory (as figured-bass numbers, for example) 
and useful for representing certain musical relationships. We will never do things 
to the integers that don’t have musical significance; rather, we will use numbers and 
arithmetic to help us think about aspects of the music we study. The music itself is 
not “mathematical” any more than our lives are “mathematical” because we count our 
ages in integers. 

Example 1-7  Integer notation of pitch class (Babbitt, Composition for Four Instruments). 

Each of the twelve pitch classes is identified by an integer, 0–11. IN
BRIEF

1.5    Arithmetic modulo 12 (MOD 12)

Every pitch belongs to one of the twelve pitch classes. Going up an octave (adding 
twelve semitones) or going down an octave (subtracting twelve semitones) will pro-
duce another member of the same pitch class. For example, if we start on the Eb above 
middle C (a member of pitch-class 3) and go up twelve semitones, we end up back 
on pitch-class 3. In other words, in the world of twelve pitch classes, 3 + 12 = 15 = 3. 

Any number larger than 11 or smaller than 0 is equivalent to some integer from 
0 to 11. To figure out which one, just add or subtract 12 (or any multiple of 12). 
Twelve is called the modulus, and we will frequently use arithmetic modulo 12, for 
which mod 12 is an abbreviation. In a mod 12 system, –12 = 0 = 12 = 24, and so on. 
Similarly, –13, –1, 23, and 35 are all equivalent to 11 (and to each other) because 
they are related to 11 (and to each other) by adding or subtracting 12. It is easiest to 
understand these (and other) mod 12 relationships by envisioning a circular clockface, 
like the one in Example 1-8.
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We locate pitches in an extended pitch space, ranging in equal-tempered semi-
tones from the lowest to the highest audible tone. The traditional grand staff is a good 
illustration of pitch space: it provides distinct positions for all of the pitches, including 
the 88 pitches represented by the keys of the piano keyboard. In contrast, we locate 
pitch classes in a modular pitch-class space, as in Example 1-8, which circles back on 
itself and contains only the twelve pitch classes. You can imagine that the linear pitch 
space of the staff has been wrapped around onto the circular pitch-class space of the 
clockface. It’s like the hours of the day or the days of the week. As our lives unfold in 
time, each hour and each day are uniquely located in linear time, never to be repeated. 
But we can be sure that, if it’s eleven o’clock now, it will be eleven o’clock in twelve 
hours (that’s a mod 12 system), and that if it’s Friday today, it will be Friday again in 
seven days (that’s a mod 7 system). Just as our lives unfold simultaneously in linear 
and modular time, music unfolds simultaneously in pitch and pitch-class space.

Example 1-8  The pitch-class clockface.

# b

# b

# b

b #

# b 

In modular pitch-class space (represented by the pitch-class clockface), 
going up or down by twelve semitones leads to another member of 
the same pitch class.

IN
BRIEF

1.6    Intervals (calculated in semitones)

In tonal music, the interval between two pitches is named with reference to steps in a 
diatonic scale (e.g., major third, diminished fifth). Post-tonal music, however, doesn’t nec-
essarily refer to diatonic scales, so the traditional interval names can be cumbersome or 
even misleading. Rather, intervals in post-tonal music are named by the number of semi-
tones they contain. Just as A# and Bb are part of the same pitch class, the major third and 
diminished fourth are treated as the same interval, because both contain four semitones. 

Example 1-9 shows a series of seven harmonic intervals played in rhythmic unison. 
The first six intervals are spelled as major thirds while the seventh is spelled as a diminished 
fourth, but in this musical context it is clear that all seven intervals are to be understood as 
enharmonically equivalent: all are 4s, or compound (i.e., octave-equivalent) 4s.
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Intervals are calculated in semitones, not in diatonic steps or with 
traditional designations of quality (like major and minor).

IN
BRIEF

Example 1-10  Intervals counted in semitones.

Traditional Name No. of Semitones

unison   0

minor 2nd   1

major 2nd, diminished 3rd   2

minor 3rd, augmented 2nd   3

major 3rd, diminished 4th   4

augmented 3rd, perfect 4th   5

augmented 4th, diminished 5th   6

perfect 5th, diminished 6th   7

augmented 5th, minor 6th   8

major 6th, diminished 7th   9

augmented 6th, minor 7th 10

major 7th 11

octave 12

minor 9th 13

major 9th 14

minor 10th 15

major 10th 16

Example 1-9  Enharmonic and octave-equivalent intervals (Carter, String Quartet No. 3 ). 

Example 1-10 gives some traditional interval names and the number of semi-
tones they contain.
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1.7    Pitch Intervals (Ordered and Unordered)

A pitch interval ( pi ) is the distance between two pitches, measured by the number of 
semitones between them. A pitch interval is created when we move from pitch to pitch 
in pitch space. It can be as large as the range of our hearing or as small as a semitone. 
Sometimes we will be concerned with the direction of the interval, whether ascending 
or descending. In that case, the number will be preceded by either a plus sign (to indi-
cate an ascending interval) or a minus sign (to indicate a descending interval). Intervals 
with a plus or minus sign are called directed or ordered pitch intervals (opi). At other 
times, we will be concerned only with the absolute space between two pitches. For such 
unordered pitch intervals (upi), we will just provide the number of semitones between 
the pitches. For example, when we say that C4 ascends four semitones to E4, we are 
talking about an ordered pitch interval (opi = +4); when we say that there are four semi-
tones between C4 and E4, we are talking about an unordered pitch interval (upi = 4). 

Whether we consider an interval ordered or unordered depends on our partic-
ular analytical interests. Example 1-11 identifies both ordered and unordered pitch 
intervals. The ordered pitch intervals focus attention on the contour of the line, its 
balance of rising and falling motion. The unordered pitch intervals ignore contour and 
concentrate on the spaces between the pitches.

Example 1-11  Ordered and unordered pitch intervals (Schoenberg, String Quartet No. 3, first movement). 

A pitch interval is the interval between two pitches, and may be 
understood either as ordered (i.e., ascending or descending) or 
unordered (the space between the notes without respect to direction).

IN
BRIEF

1.8    Ordered Pitch-Class Intervals

A pitch-class interval (pci ) is the distance between two pitch classes. A pitch-class interval 
is created when we move from pitch class to pitch class in modular pitch-class space. It can 
never be larger than eleven semitones, because no two pitch classes can be more than eleven 
semitones apart. As with pitch intervals, we will sometimes be concerned with ordered 
pitch-class intervals (opci ) and sometimes with unordered pitch-class intervals (upci ). 
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